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What to Read? Key Readings for

Machine Learning Theory

Machine learning is the study of algorithms that allow machines to learn patterns and

make predictions based on data. Formally, it explores how a system can generalise from

observed samples to unseen instances, minimising error whilst balancing constraints

such as computational complexity and data availability. In essence, learning is a

mathematical process that seeks to identify a hypothesis function from a class of

possible functions that performs well on unseen data.

The goal of machine learning is to approximate an unknown function that maps

inputs to outputs, given a finite set of observations. For example, the task of predicting

whether an email is spam can be described mathematically: we seek a function h ∈ H,

from a hypothesis class H, such that h(x) ≈ y for input-output pairs (x, y) drawn from

an unknown probability distribution D. The challenge is to identify a function that

minimises error on new, unseen samples—not just the observed data. Central to the

theory of learning is the concept of generalisation: how well a hypothesis learned

from a training set applies to unseen instances. This requires us to formalise notions of

risk, such as the expected error (or generalisation error), and develop algorithms that

can efficiently search the hypothesis space to minimise it.

However, learning comes with fundamental limitations. Overfitting, for instance,

occurs when a model performs well on the training data but poorly on unseen data.

This leads us to trade-offs between model complexity and accuracy, captured math-

ematically through frameworks like Empirical Risk Minimisation (ERM), Structural

Risk Minimisation (SRM), and regularisation techniques.

What to Expect from This Course

In this course, we will delve deeply into the mathematical underpinnings of machine

learning. Our goal is not just to implement algorithms but to rigorously understand
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why they work and when they are expected to fail. You will engage with

mathematical concepts such as probability theory, optimisation, and linear algebra, as

they are essential tools for analysing learning algorithms. Here is an of what you can

expect:
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Introduction to Machine Learning Theory. This

part lays the groundwork by introducing what machine

learning theory entails and why it is critical to modern

science. We will discuss supervised and unsupervised learn-

ing paradigms, essential for understanding how models

are trained and validated. Additionally, decision theory

is introduced to frame predictions mathematically. This

foundational knowledge helps clarify the scope and limita-

tions of machine learning models and prepares students for

deeper theoretical exploration.

Formal Foundations of Learning. This part focuses on

formalising the process of learning using the PAC (Probably

Approximately Correct) framework. The PAC framework provides the mathematical

tools to reason about whether a machine can learn a given task. VC-dimension is

introduced to quantify the capacity of hypothesis classes and their ability to generalise.

Understanding these topics is critical for assessing whether a learning algorithm is

well-suited for specific tasks and data.

Empirical Risk Minimisation and Regularisation. ERM is a fundamental

principle that underpins many learning algorithms. This week explores how ERM

minimises errors on training data and highlights its shortcomings, particularly overfitting.

Regularisation techniques like ridge regression are introduced to mitigate overfitting by

balancing model complexity and performance. The bias-variance trade-off is discussed

as a central framework for navigating the trade-offs inherent in model design. These

concepts are key to building reliable and effective machine learning systems.

Complexity Measures and Learnability. We delve into advanced measures of

complexity such as Rademacher complexities and uniform convergence. These tools help

assess the ability of a model to generalise to unseen data. We explore Sauer’s lemma

and growth functions, which provide theoretical insights into how complexity affects

learnability. These topics are essential for selecting models that balance expressiveness

with generalisation.

Computational Complexity and Generalisation. Understanding the computa-

tional limits of learning is crucial for developing efficient algorithms. During this part

of the course, we introduce the No-Free-Lunch theorem, which illustrates the trade-offs

4



involved in making assumptions about learning tasks. PAC-Bayesian bounds are intro-

duced to provide probabilistic guarantees for model generalisation. These insights are

critical for understanding the practical feasibility of machine learning systems.

Advanced Generalisation Techniques. This section expands on generalisation by

introducing covering numbers, which refine our ability to bound generalisation errors.

PAC-Bayesian analysis is revisited with a focus on applications to high-dimensional

data, a critical challenge in modern machine learning. These techniques are vital for

ensuring that models remain robust and reliable even in complex scenarios.
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Optimisation Techniques. Optimisation lies

at the heart of training machine learning models.

This part of the course introduces convex opti-

misation and stochastic gradient descent (SGD),

focusing on their convergence properties in convex

settings. Adaptive optimisation techniques, which

are widely used in deep learning, are also discussed.

Grasping these methods is crucial for implementing

efficient and scalable machine learning algorithms.

Kernel Methods and High-Dimensional

Data. Kernel methods provide a powerful framework for learning non-linear patterns

in data. This week introduces the representer theorem and discusses common kernels

such as polynomial and Gaussian kernels. Practical applications in high-dimensional

data, including support vector machines (SVMs), are explored. These methods are

particularly relevant for tasks requiring robust non-linear decision boundaries.

Neural Networks. Neural networks are highly relevant to modern machine learning.

This part of our course focuses on single-layer networks, exploring their ability to

approximate functions through the universal approximation theorem. Challenges such

as overparameterisation are discussed alongside neural tangent kernels, which provide

theoretical insights into the success of deep learning. Understanding these topics is key

to leveraging neural networks effectively in practice.

Ensemble Learning and Online Learning. Ensemble methods such as bagging

and boosting are introduced as strategies to improve model accuracy and robustness.

Online learning algorithms, including weighted majority approaches, are explored for

their ability to adapt to sequential data. These methods are essential for building

flexible and adaptive systems that can handle dynamic environments.

Probabilistic Methods. Probabilistic reasoning is important for modelling uncer-

tainty in machine learning. This week covers Bayesian inference and Gaussian processes,

which allow for robust uncertainty estimation. PAC-Bayesian analysis is revisited, with
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practical examples in model selection and evaluation. These topics are particularly

relevant for applications requiring reliable confidence measures.

Structured Prediction. Many tasks involve predicting structured outputs, such as

sequences or rankings. We will explore structured SVMs, loss functions for structured

data, and decoding techniques. Mastering these methods is critical for tackling real-world

tasks that extend beyond simple classification or regression.

Overparameterisation and Implicit Bias. Modern deep learning systems often

rely on overparameterised models. We examine the double descent phenomenon and

the implicit bias of gradient descent, which explain why these models can generalise

effectively despite their complexity. Understanding these phenomena is crucial for

designing effective deep learning architectures.

Advanced Optimisation Techniques. Non-convex optimisation presents significant

challenges in machine learning. In this section, we explore strategies for navigating non-

convex landscapes and introduces adaptive methods for large-scale problems. Techniques

for handling sparse and high-dimensional data are also discussed, with applications to

modern learning problems.

Causal Inference and Reinforcement Learning. The course concludes with causal

inference, focusing on causal models and counterfactual reasoning for decision-making.

Reinforcement learning theory is introduced to address sequential decision-making

problems. These topics are essential for building systems that make informed decisions

based on cause-effect relationships.

Reading Materials

This course is supported by several core texts that provide the essential theoretical and

practical knowledge required for this course on machine learning theory. In addition

to the main readings, extra materials will be recommended throughout the course for

those who are curious to explore advanced topics and gain deeper insights. Below is a

brief description of the primary materials we will use, along with supplementary texts

available for further study.

Main Materials

⋆Learning Theory from First Principles by (Bach, 2024). This textbook offers a

rigorous exploration of learning theory, emphasising derivation from first principles and

linking theoretical insights to practical implementation. It covers essential topics in

statistical learning, optimisation techniques, kernel methods, and overparameterised
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models, while discussing challenges such as adaptivity, trade-offs in approximation,

estimation, and optimisation errors. Special topics include ensemble learning, online

learning, and structured prediction, enriched by illustrative experiments and exercises.

The text is tailored for theory-oriented students and researchers who seek to under-

stand the mathematical foundations and algorithmic innovations underpinning modern

machine learning.

What Content Is Expected to Be Learned? A general overview of the foundational

concepts can be found in Chapter 1, providing students with a structured introduction to

machine learning fundamentals. For those already familiar with the subject matter, you

may choose to jump directly into the core theoretical chapters. The main theoretical

fundamentals expected to be acquired in-depth are covered in Chapters 2,

4, 5, 6, 7, and 14. These chapters encompass topics such as supervised learning

paradigms, empirical risk minimisation, statistical learning theory, kernel methods, and

probabilistic generalisation frameworks, all critical for understanding learning theory.

In addition, we will examine specific algorithms and advanced theoretical discussions

to gain a broad understanding of their purpose and implications. While a detailed

study isn’t required for these, general familiarity with their definitions and

motivations is encouraged. These are found in Chapters 9, 10, 12, 13, and 15, which

include neural networks, ensemble learning, overparameterisation, structured prediction,

and theoretical lower bounds.

_ The authors of that (Bach, 2024) provide a copy for personal use, as indicated by

the authors, at the following link.

⋆Understanding Machine Learning: From Theory to Algorithms by (Shalev-

Shwartz and Ben-David, 2014). This book offers a well-rounded introduction to the

theory and algorithms that form the foundation of modern machine learning. It begins

by addressing fundamental questions about learning, including how learning can be

formally defined and under what conditions it succeeds. The text delves into key

concepts such as PAC learning, VC-dimension, and empirical risk minimisation, which

underpin the theoretical side of the field. Alongside theory, the book introduces practical

algorithms such as linear models, neural networks, and support vector machines, and

explores optimisation methods like gradient descent and regularisation. Special attention

is given to challenges such as overfitting, model selection, and evaluation strategies,

equipping readers with the tools needed to build effective models.

What Content Is Expected to Be Learned? A general overview of the foundational

concepts can be found in Chapter 1, offering students a structured introduction to

machine learning fundamentals. For those already familiar with the subject matter,
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you may choose to jump directly into the core chapters. The main theoretical

fundamentals expected to be acquired in-depth are covered in Chapters

2, 3, 5, 6, 13, and 14. These chapters provide the mathematical and theoretical

grounding essential for this course, covering topics such as PAC learning, VC-dimension,

risk minimisation, and key algorithmic frameworks. In addition, we will explore

several particular algorithms to establish a general understanding of their definitions

and motivations. While a detailed study isn’t required for these, a general

knowledge of their purpose and application is important. These are found in

Chapters 9, 15, 18-20, and 22-23.

_ The authors of that (Shalev-Shwartz and Ben-David, 2014) provide a copy for

personal use, as indicated by the authors, at the following link.

⋆Convex Optimisation: Algorithms and Complexity by (Bubeck et al., 2015). This

material offers a comprehensive introduction to convex optimisation with a particular

focus on algorithms and their complexities. It begins by addressing fundamental

aspects of convexity, such as the properties of convex functions and sets, and explains

why convexity plays a central role in optimisation. The text also seeks to cover

essential algorithms, including gradient descent, cutting plane methods, and stochastic

optimisation, highlighting their convergence rates and computational feasibility. With

a strong emphasis on both the theoretical underpinnings and practical implementation,

this text is particularly valuable for optimisation and machine learning. The structured

presentation makes it a great resource for the course, providing deeper insights into

optimisation techniques critical for machine learning models.

What Content Is Expected to Be Learned? To gain a solid general understanding

from this reading, students should focus on Chapter 1 (a concise and very short

overview) and Section 3.2. These sections cover the foundational concepts and

core methods sufficiently for a comprehensive introduction without delving into overly

detailed analysis. This targeted reading is designed to equip students with essential

insights into convex optimisation’s role in machine learning and the main algorithms

relevant to this course.

_ The pre-print version of this material is available online in this link.

⋆Practical Implementation Resources. Whilst this course focuses on machine learning

theory, there will also be a practical component to reinforce your understanding. For

this, homework exercises will primarily involve Python-based implementations. We

encourage you to explore and become familiar with Python’s scikit-learn library, as it

will be the main tool used for practical assignments.
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� For reference and guidance, please use the Scikit-learn project’s official documentation

in here.

Supplementary Materials

The following materials are supplementary and intended for students who are curious

to gain deeper insights into the theory and practical aspects of machine learning. These

resources are not part of the core curriculum but are provided to support those interested

in exploring the subject further.

⋆Fit without fear: remarkable mathematical phenomena of deep learning through

the prism of interpolation by (Belkin, 2021). It explores foundational mathematical

concepts related to deep learning, with particular focus on interpolation and over-

parameterisation. The work is an attempt to bridge the gap between the theoretical

underpinnings and practical success of deep learning models, which have outpaced

traditional learning theory.

_ The pre-print version of this material is available online in this link.

⋆High-dimensional probability: An introduction with applications in data science

by Vershynin (2018). This supplementary material reading provides a rigorous explo-

ration of probability theory specifically tailored for high-dimensional contexts, which

are essential for understanding the theoretical foundations of machine learning. The

book introduces essential concepts like concentration inequalities, random matrices,

high-dimensional distributions, and random projections—all of which are central to

the mathematical understanding of machine learning algorithms, particularly in high-

dimensional and over-parameterised models. These topics align well with understanding

how machine learning models generalise, optimise, and handle high-dimensional data,

making it a valuable resource for students in this machine learning theory course.

_ You can access a free draft of this material here, provided it is used only for personal

and classroom needs as indicated by the author.
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